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Prime Densities

Observation

Define Mn to be product of all primes ≤ n, then it was discovered that
there is always a prime between n and Mn + 1.

Proof is simple. Since for all primes p ≤ n, p|Mn

p ∤ Mn + 1
So Mn + 1 must have a prime factor greater than n.
=⇒ ∃ prime p such that n < p ≤ Mn + 1
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Bertrand’s postulate

Statement

For every n ∈ N, n > 1, ∃ a prime p such that :

n < p < 2n

.
Another formulation, where pn is the nth prime is :

for n ≥ 1, pn+1 < 2pn
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Introduction to Twin Primes

We are probably well familiar with primes. Twin primes are nothing but a
pair of primes which have a difference 2, i.e p2 = p1 + 2.

Examples : (3, 5), (5, 7), (11, 13), (17, 19), . . .
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Digital root of product of twin primes

Digital root

Take the sum of digits of a number. If it is greater than 10, repeat the
process. Example :
Digital root of 69420 → 6 + 9 + 4 + 2 + 0 = 21 → 2 + 1 = 3
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Digital root of product of twin primes

Consider (5,7)
5× 7 = 35, 3 + 5 = 8

Similarly, (17,19)
17× 19 = 323, 3 + 2 + 3 = 8.

Again, (29, 31)
29× 31 = 899, 8 + 9 + 9 = 26, 2 + 6 = 8

Is it a coincidence?

Let’s go a little large
(191, 193) gives 191× 193 = 36863
3 + 6 + 8 + 6 + 3 = 26, 2 + 6 = 8.
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Digital root of product of twin primes

Theorem :

Let p ≥ 5 and p+2 be twin primes. Digital root of p(p+2) is always 8.

Proof :

For any prime p ≥ 5,
2, 3 ∤ p =⇒ p ≡ 1,−1 (mod 6)
For twin primes p & p + 2,
if p ≡ 1 (mod 6), then p + 2 ≡ 3 (mod 6) =⇒ 3 | p + 2
A contradiction.
Hence p ≡ −1 (mod 6) and p + 2 ≡ 1 (mod 6).
So let p = 6k − 1, p + 2 = 6k + 1
p(p + 2) = 36k2 − 1 ≡ 8 (mod 9).

We will prove that residue mod 9 is the digital root for any n ∈ N.
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Twin Prime Conjecture

The Conjecture

There are infinitely many twin primes. They are frequent for smaller
integers, but get rarer and rarer as the number increases.

Examples

The biggest known twin primes are 2996863034895× 21290000 ± 1
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Euler Totient Function and Divisor Function

Definition 1

Totient function : ϕ(n) is defined as the number of positive integers ≤ n
such that they are co-prime to n.
Example : ϕ(4) = 2, ϕ(15) = 8, ϕ(100) = 40

Definition 2

Divisor function : σ(n) is defined as the sum of all positive divisors of n.
Example : σ(4) = 7, σ(15) = 24, σ(100) = 217
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Zumkeller Theorem

Statement :

For twin primes p2 and p1, with p2 > p1,
ϕ(p2) = σ(p1)

The proof is left as an exercise.
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Mersenne and Fermat Primes

Mersenne Primes :

Primes of the form 2n − 1.
An interesting and easy to prove result, is that if 2n − 1 is a prime, then n
is also a prime

Fermat Primes :

Primes of the form Fn = 22
n
+ 1 are known as Fermat Prime. Fermat

conjectured that for all n ∈ N, Fn is prime, but his claims were proved
wrong, when it was discovered that F5 is not prime. It is interesting that
F1,F2,F3,F4 are the only known Fermat primes. After that till F32 which
has been discovered, all have turned out to be composite. It is still
unknown if there is any other Fermat Primes.
Fun fact : Fn+1 = F0F1 . . .Fn−1 + 2
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Other related statements

• Goldbach Conjecture :
Every even natural number greater than 2 can be written as the sum
of two prime numbers.

• Legendre’s Conjecture :
For any n ∈ N, there is a prime between n2 and (n + 1)2.

• Oppermann’s Conjecture :
For any n ∈ N, there is a prime between n(n− 1) and (n+ 1)2 and at
least another prime between n2 and n(n + 1).

• Prime Number Theorem (PNT) :
It tells us about the approximate distribution between primes and
gives the prime counting function π(n) ∼ N

log(N)

• Dubner’s Conjecture :
It states that every even number greater than 4208 is a sum
of twin primes.
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