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Introduction to Normed Spaces

Definition 1 (Normed Space)

A normed space is a vector space equipped with a norm.
A norm on a vector space X over field K (= R or C) is a function
∥·∥ : X → R that satisfies the following properties for all vectors x , y ∈ X
and scalar α ∈ K :

• Non-negativity: ∥x∥ ≥ 0, and ∥x∥ = 0 if and only if x = 0

• Homogeneity: ∥αx∥ = |α|∥x∥
• Triangle inequality: ∥x + y∥ ≤ ∥x∥+ ∥y∥

Metric Structure on Normed Spaces

In normed space (X , ∥·∥), if we define d : X × X → R by
d(x , y) = ∥x − y∥ for x , y ∈ X , then (X , d) is a metric space .
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Examples of Normed Spaces

Euclidean Spaces

(Rn, ∥·∥∞) and (Rn, ∥·∥p) for real number p ≥ 1 are normed spaces.
For x = (x1, x2, . . . , xn) ∈ Rn and p ∈ [1,∞),

∥x∥p =
( n∑

i=1
|xi |p

) 1
p
and ∥x∥∞ = sup

{
|xi | : i = 1, 2, . . . , n

}
Sequence Spaces

Denoted as ℓp space or ℓ∞ space depending on the norm:
For a sequence x = (xn) and p ∈ [1,∞),

∥x∥p =
( ∞∑

i=1
|xi |p

) 1
p
and ∥x∥∞ = sup

{
|xi | : i ∈ N

}
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Examples of Normed Spaces

Function Spaces

Denoted as Lp space or L∞ space depending on the norm:

p-norm: ∥f ∥p =
(∫ n

i=1
|f |pdµ

) 1
p

sup-norm: ∥f ∥∞ = sup
{
|f (x)| : x ∈ Ω

}
C [a, b]

C [a, b] =
{
f : [a, b] → R : f is continuous on [a, b]

}
p-norm: ∥f ∥p =

(∫ n

i=1
|f |pdx

) 1
p

sup-norm: ∥f ∥∞ = sup
{
|f (x)| : x ∈ [a, b]

}
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Examples of Normed Spaces

Note

Spaces like C 1[a, b] which represents the space of continuously
differentiable real valued function on [a, b] can also be equipped with the
supremum norm. However, it turns out that in applications, this is not a
good choice (we will discuss this later on in the context of continuity). So,
we’ll use a different norm on C 1[a, b] given below:

∥f ∥1,∞ = ∥f ∥∞ + ∥f ′∥∞, f ∈ C 1[a, b],
where f ′ refers to the derivative of f .
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Continuity in Normed Spaces

Definition 2 (Continuous function)

A function f : X → Y , where X and Y are normed spaces, is said to be
continuous at a point x0 ∈ X if, for any ϵ > 0, there exists a δ > 0 such
that whenever x ∈ X satisfies ∥x − x0∥ < δ, it follows that
∥f (x)− f (x0)∥ < ϵ.

The map f : X → Y is called continuous if f is continuous at x0 for all
x0 ∈ X
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Continuity in Normed Spaces

Remark

The map D : (C 1[0, 1], ∥·∥∞) → (C [0, 1], ∥·∥∞) by

(Dx)(t) = x′(t), t ∈ [0, 1], x ∈ C 1[0, 1].

is nowhere continuous on C 1[0, 1].

But if we change the norm of C 1[0, 1] to ∥·∥1,∞
then the map D : (C 1[0, 1], ∥·∥1,∞) → (C [0, 1], ∥·∥∞) by

(Dx)(t) = x′(t), t ∈ [0, 1], x ∈ C 1[0, 1].

is continuous on C 1[0, 1].
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Continuous Linear Transformation

Theorem 3

Let X and Y be normed spaces over R, and T : X → Y be a linear
transformation. Then are equivalent:

1 T is continuous.

2 T is continuous at 0.

3 There exists an M > 0 such that for all x ∈ X , ∥T (x)∥ ≤ M∥x∥

Example

Let S := {h ∈ C 1[a, b] : h(a) = h(b) = 0}. Let A,B ∈ C [a, b] be two
fixed functions. Consider the map L : S → R given by

L(h) =

∫ b

a

(
A(t)h(t) + B(t)h′(t)

)
dt, h ∈ S .

L is a continuous linear transformation.
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Differentiation in Normed Spaces

Definition 4 (Frechet derivative)

Let X , Y be normed spaces, f : X → Y be a map, and x0 ∈ X . f is said
to be differentiable at x0 if there exists a continuous linear transformation
L : X → Y such that for every ϵ > 0, there exists a δ > 0 such that
whenever x ∈ X satisfies 0 < ∥x − x0∥ < δ, we have

∥f (x)− f (x0)− L(x − x0)∥
∥x − x0∥

< ϵ

In other words, f is differentiable at x0 if there exists a continuous linear
transformation L : X → Y such that

lim
x→x0

∥f (x)− f (x0)− L(x − x0)∥
∥x − x0∥

= 0

If f is differentiable at x0, then this continuous linear transformation L is
unique and is called the Frechet derivative of f at x0, denoted by Df (x0).
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Differentiation in Normed Spaces

Definition 5 (Gradient)

Let U ⊂ Rn be open and f : U → R be differentiable at a ∈ U with
Df (a) = A. As A is a linear transformation from Rn to R, we know that
there exists a unique vector α ∈ Rn such that Ah = α · h =

∑n
i=1 αihi if

h = (h1, . . . , hn). This unique vector α is called the gradient of f at a. It
is denoted by gradf (a) or ∇f (a). So, we have

gradf (a) =
(
Df (a)(e1), . . . ,Df (a)(en)

)
and Df (a)(h) = ∇f (a) · h

.
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Differentiation in Normed Spaces

Definition 6 (Directional Derivative)

Let U ⊂ Rn be open and f : U → R be any function. Fix a vector v ∈ Rn.
We say that f has directional derivative at a in the direction of v if the
limit limt→0

f (a+tv)−f (a)
t exists. Note that since U is open, as observed

earlier, a+ tv ∈ U for all t in a sufficiently small interval around 0. The
limit, if exists, is denoted by Dv f (a).
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Differentiation in Normed Spaces

Theorem 7

Let f : U ⊂ Rn → R be differentiable at a ∈ U. Then Dv f (a) exists for all
v ∈ U and we have

Dv f (a) = Df (a)(v)

Remark

There exists functions f : U → R such that Dv f (a) exists for all v ∈ U but
f is not differentiable.

However, if Dv f (x) exists and is continuous for all v ∈ U in a
neighbourhood of a ∈ U, then f is diiferentiable at a.
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Mean Value Theorem

Theorem 8

Let f : U ⊂ Rn → R be differentiable on U and x , y ∈ U. Assume that the
line segment [x , y ] := {(1− t)x + ty : t ∈ [0, 1]} ⊂ U. Then there exists
t0 ∈ (0, 1) such that if we set z := (1− t0)x + t0y, then

f (y)− f (x) = Df (z)(y − x) =
n∑

i=1

∂f

∂xi
(z)(yi − xi )
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Taylor’s Formula

f : U ⊂ Rn → R be a C 2 function.
For, simplicity, lets assume 0, x ∈ U, U is open and star shaped at 0, then
the taylor expansion of f at 0 is given by

f (x) = f (0) +
n∑

i=1

∂f

∂xi
(0)xi +

1

2

n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
(θx)xjxi , where θ ∈ (0, 1)

This can also be written as

f (x) = f (0) +∇f (0) · x + xTHf (θx)x ,

where Hf (x) = D2f (x) =


∂2f

∂x21
(x) . . .

∂2f

∂x1∂xn
(x)

...
. . .

...
∂2f

∂xn∂x1
(x) . . .

∂2f

∂x2n
(x)

 and θ ∈ (0, 1)

Hf (x) is known as the Hessian of f at x .
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Convex Sets and Convex Functions

Definition 9 (Convex Sets)

Let X be a normed space. A subset C ⊂ X is said to be convex set if for
every x1, x2 ∈ C , and all α ∈ (0, 1), (1− α) · x1 + α · x2 ∈ C .

Definition 10 (Convex Functions)

Let X be a normed space and C ⊂ X be convex. A map f : C → R is said
to be convex function if for every x1, x2 ∈ C , and all
α ∈ (0, 1), f ((1− α) · x1 + α · x2) ≤ (1− α)f (x1) + αf (x2).
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Convex Sets and Convex Functions

Theorem 11

Let f : R → R be a twice continuously differentiable function. Then f is
convex if and only if f ′′(x) ≥ 0 for every x ∈ X.

Theorem 12

Let C be an open convex set, f : C → R be a C 2 function such that for all
x ∈ C,

Hf (x) =


∂2f

∂x21
(x) . . .

∂2f

∂x1∂xn
(x)

...
. . .

...
∂2f

∂xn∂x1
(x) . . .

∂2f

∂x2n
(x)


is positive semi-definite. Then f is convex.
Note: A matrix M is positive semi-definite if vTMv ≥ 0 for all v ∈ Rn
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Role of Vanishing Derivative in Optimization

Theorem 13

Let X be a normed space, and let f : X → R be a function that is
differentiable at x∗ ∈ X. If f has a minimum at x∗, then Df (x∗) = 0

Theorem 14

Let X be normed space and f : X → R be convex and differentiable. If
x∗ ∈ X is such that Df (x∗) = 0, then f has a minimum at x∗.
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Optimization: Euler-Lagrange Equation as a Special Case

Lemma 15

If k ∈ C [a, b] such that for all h ∈ C 1[a, b] with h(a) = h(b) = 0, we have∫ b

a
k(t)h′(t)dt = 0,

then there exists a constant c ∈ R such that k(t) = c , ∀t ∈ [a, b].
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Optimization: Euler-Lagrange Equation as a Special Case

Proof.

Take c :=
1

b − a

∫ b
a k(t)dt.

Define h0 : [a, b] → R by h0(t) =
∫ t
a (k(τ)− c)dτ .

Then h0 ∈ C 1[a, b] and h0(a) = h0(b) = 0. Thus
∫ b
a k(t)h′0(t)dt = 0.

Since h′0(t) = k(t)− c , we get∫ b

a
(k(t)− c)2dt =

∫ b

a
(k(t)− c)h′0(t)dt

=

∫ b

a
k(t)h′0(t)dt − c

∫ b

a
h′0(t)dt

= 0− c(h0(b)− h0(a))

=0

Thus k(t)− c = 0 for all t ∈ [a, b]
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Euler-Lagrange Equation

Theorem 16

Suppose that

• S = {x ∈ C 1[a, b] : x(a) = ya, x(b) = yb}
• F : R3 → R, (ξ, η, τ) F7−→ F (ξ, η, τ), is a C 2 function

• f : S → R is given by f (x) =

∫ b

a
F (x(t), x′(t), t)dt, x ∈ S

Then we have:

(i) If x∗ is a minimizer of f , then it satisfies the Euler-Lagrange equation:

∂F

∂ξ
(x∗(t), x

′
∗(t), t)−

d

dt

(
∂F

∂η
(x∗(t), x

′
∗(t), t)

)
= 0 for all t ∈ [a, b]

(ii) If f is convex and x∗ ∈ S satisfies the Euler-Lagrange equation, then
x∗ is a minimizer of f .
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Euler-Lagrange Equation

Proof.

(i) The proof is long, so we divide it into multiple steps.
Step 1. The set S is not a vector space (unless ya = yb = 0). So, we
introduce a new vector space X = {h ∈ C 1[a, b] : h(a) = h(b) = 0}
with norm ∥·∥1,∞.
Note that h ∈ X ⇐⇒ x∗ + h ∈ S
Define f̃ : X → R given by f̃ (h) = f (x∗ + h), h ∈ X .
Now, f̃ (h) = f (x∗ + h) ≥ f (x∗) = f̃ (0), for all h ∈ X . So, 0 is a
minimizer of f̃ .
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Euler-Lagrange Equation

Proof.

Step 2. Calculating Df̃ (0).
By applying Taylor’s formula on F , we have

F (ξ0 + p,η0 + q, τ0 + r)− F (ξ0, η0, τ0)

=p
∂F

∂ξ
(ξ0, η0, τ0) + q

∂F

∂η
(ξ0, η0, τ0) + r

∂F

∂τ
(ξ0, η0, τ0)

+
1

2

[
p q r

]
HF (ξ0 + θp, η0 + θq, τ0 + θr)

pq
r



for some θ ∈ (0, 1).
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Euler-Lagrange Equation

Proof.

Using this for each t ∈ [a, b], we obtain

f̃ (h)− f̃ (0) =

∫ b

a

(
A(t)h(t) + B(t)h′(t)

)
dt

+

∫ b

a

1

2

[
h(t) h′(t) 0

]
HF

(
P(t)

)h(t)h′(t)
0

 dt

where Θ :[a, b] → (0, 1)

A(t) =
∂F

∂ξ
(x∗(t), x

′
∗(t), t)

B(t) =
∂F

∂η
(x∗(t), x

′
∗(t), t)

P(t) =
(
x∗(t) +Θ(t)h(t), x′∗(t) +Θ(t)h′(t), t

)
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Euler-Lagrange Equation

Proof.

Define L : X → R by

L(h) =

∫ b

a

(
A(t)h(t) + B(t)h′(t)

)
dt, h ∈ X .

We know that L is a continuous linear transformation. It can be
shown that for h ∈ X ,

|f̃ (h)− f̃ (0− L(h− 0)| ≤ M∥h∥21,∞

where

M =
1

2

∫ b

a

(∣∣∣∣∂2F

∂ξ2
(P(t))

∣∣∣∣+ 2

∣∣∣∣ ∂2F

∂ξ∂η
(P(t))

∣∣∣∣+ ∣∣∣∣∂2F

∂η2
(P(t))

∣∣∣∣)dt
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Euler-Lagrange Equation

Proof.

Let ϵ > 0. Set δ =
ϵ

M
. Then, whenever h ∈ X satisfies

0 < ∥h− 0∥1,∞ < δ, we have

|f̃ (h)− f̃ (0)− L(h− 0)|
∥h∥1,∞

≤
M∥h∥21,∞
∥h∥1,∞

= M∥h∥1,∞ < Mδ = ϵ.

Thus, Df̃ (0) = L, i.e.,

Df̃ (0)(h) = L(h) =

∫ b

a

(
A(t)h(t) + B(t)h′(t)

)
dt, h ∈ X

SRS, 2024 Fundamental Theorems of Optimization 26 / 36



Euler-Lagrange Equation

Proof.

Step 3. Utilizing Df̃ (0) = 0.
By using integration by parts,∫ b

a
A(t)h(t)dt =h(t)

∫ t

a
A(τ)dτ

∣∣∣∣∣
b

a

−
∫ b

a

(
h′(t)

∫ t

a
A(τ)dτ

)
dt

=−
∫ b

a

(
h′(t)

∫ t

a
A(τ)dτ

)
dt

because h(a) = h(b) = 0. So, for h ∈ X

L(h) =

∫ b

a

(
A(t)h(t) + B(t)h′(t)

)
dt

=

∫ b

a

(
−
∫ t

a
A(τ)dτ + B(t)

)
h′(t)dt
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Euler-Lagrange Equation

Proof.

Now, as 0 is a minimizer for f̃ , by Theorem 13, Df̃ (0) = L = 0. This
means L(h) = 0 for all h ∈ X . Using Lemma 18, we obtain

−
∫ t

a
A(τ)dτ + B(t) = c , ∀ t ∈ [a, b]

for some constant c. By differentiating this with respect to t, we
obtain

A(t)− d

dt

(
B(t)

)
= 0, ∀ t ∈ [a, b]

which is same as

∂F

∂ξ
(x∗(t), x

′
∗(t), t)−

d

dt

(
∂F

∂η
(x∗(t), x

′
∗(t), t)

)
= 0, ∀ t ∈ [a, b]

This completes the proof of (i).
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Euler-Lagrange Equation

Proof.

(ii) Now, let f is convex and x∗ ∈ S satisfies the Euler-Lagrange equation.
Define X and f in the same manner as Step 1. By retracing the
steps of Step 3 above, we see that Df̃ (0) = 0. Also, f is convex
implies f̃ is convex. So, by Theorem 14, f̃ has a minimum at 0.
For any x ∈ S , we have

f (x) = f (x∗ + (x− x∗)) = f̃ (x− x∗) ≥ f̃ (0) = f (x∗).

Hence, x∗ is a minimizer of f .
This completes the proof.
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Brachistochrone Curve

The Problem Statement

Johann Bernoulli posed the problem of the brachistochrone to the readers
of Acta Eruditorum in June, 1696. Bernoulli wrote the problem statement
as:

Given two points A and B in a vertical plane, what is the curve
traced out by a point acted on only by gravity, which starts at A
and reaches B in the shortest time.
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Brachistochrone Curve

Open in Desmos
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Brachistochrone Curve

Solution

We will here use the illustrated coordinate system.
Let the particle starts from A(0, 0) and reaches B(h, a), h, a > 0 and
moves along the curve y = y(x) such that y(0) = 0 and y(h) = a.
Using the conservation of energy, we have

1

2
mv2 = mgx =⇒ v =

√
2gx
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Brachistochrone Curve

Solution

Also, the arc length or distance along the curve s satisfies

ds

dx
=

√
1 +

(
dy

dx

)2

and

v =
ds

dt

. So the total time required by the particle to descend along the curve
y = y(x) is given by

T (y) =

∫ B

A
dt =

∫ B

A

ds

v
=

∫ h

0

√
1 + (y ′(x))2√

2gx
dx
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Brachistochrone Curve

Solution

Now, to find the minimizer of T we will apply Theorem 16 i.e.,

F (y(x), y ′(x), x) =

√
1+(y ′(x))2√

2gx
need to satisfy the Euler-Lagrange

equation. We get

0− d

dx

(
y ′(x)√

2gx(1 + (y ′(x))2

)
= 0

Integrating this, we get
y ′(x)√

2gx(1 + (y ′(x))2
= c

where c is a constant. Rearranging this, we get

y ′(x) =

√
x

α− x
,where α =

1

2gc2
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Brachistochrone Curve

Solution

It turns out the solution to this (in parametric form) is given by

x(θ) =
α

2
(1− cos θ)

,
y(θ) =

α

2
(θ − sin θ)

This is exactly the cycloid passing though (0, 0) and (h, a)!
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Thank You!
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