## Fundamental Theorems of Optimization

A brief overview of continuity, differentiability and optimization in normed spaces, introduction to Euler-Lagrange Equations and solving Brachistochrone curve problem as an application

Sandipan Samanta

MathematiX Club NISER





### Table of Contents

- Continuity and Differentiability in Normed Spaces Introduction to Normed Spaces Continuity in Normed Spaces Differentiation in Normed Spaces
- 2 Conditions for Optimization of Functions Convex Sets and Convex Functions Role of Vanishing Derivative in Optimization
- Optimization: Euler-Lagrange Equation as a Special Case Euler-Lagrange Equation Brachistochrone Curve





## Introduction to Normed Spaces

### Definition 1 (Normed Space)

A **normed space** is a vector space equipped with a norm.

A norm on a vector space X over field  $K (= \mathbb{R} \text{ or } \mathbb{C})$  is a function  $\|\cdot\|: X \to \mathbb{R}$  that satisfies the following properties for all vectors  $x, y \in X$  and scalar  $\alpha \in K$ :

- Non-negativity:  $||x|| \ge 0$ , and ||x|| = 0 if and only if  $x = \mathbf{0}$
- Homogeneity:  $\|\alpha x\| = |\alpha| \|x\|$
- Triangle inequality:  $||x + y|| \le ||x|| + ||y||$

### Metric Structure on Normed Spaces

In normed space  $(X, \|\cdot\|)$ , if we define  $d: X \times X \to \mathbb{R}$  by  $d(x,y) = \|x-y\|$  for  $x,y \in X$ , then (X,d) is a metric space .



## **Examples of Normed Spaces**

#### **Euclidean Spaces**

 $(\mathbb{R}^n,\|\cdot\|_{\infty})$  and  $(\mathbb{R}^n,\|\cdot\|_p)$  for real number  $p\geq 1$  are normed spaces.

For 
$$x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$$
 and  $p\in[1,\infty)$ ,

$$\|x\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$
 and  $\|x\|_{\infty} = \sup\left\{|x_{i}| : i = 1, 2, \dots, n\right\}$ 

### Sequence Spaces

Denoted as  $\ell^p$  space or  $\ell^\infty$  space depending on the norm:

For a sequence 
$$x = (x_n)$$
 and  $p \in [1, \infty)$ ,

$$\|x\|_{p} = \left(\sum_{i=1}^{\infty} |x_{i}|^{p}\right)^{\frac{1}{p}}$$
 and  $\|x\|_{\infty} = \sup\left\{|x_{i}| : i \in \mathbb{N}\right\}$ 





## **Examples of Normed Spaces**

### **Function Spaces**

Denoted as  $L^p$  space or  $L^{\infty}$  space depending on the norm:

*p*-norm: 
$$||f||_p = \left(\int_{i=1}^n |f|^p d\mu\right)^{\frac{1}{p}}$$

sup-norm:  $||f||_{\infty} = \sup \{|f(x)| : x \in \Omega\}$ 

## C[a,b]

$$C[a,b] = \Big\{ f: [a,b] \to \mathbb{R} : \mathsf{f} \text{ is continuous on } [a,b] \Big\}$$

p-norm: 
$$||f||_p = \left(\int_{i=1}^n |f|^p dx\right)^{\frac{1}{p}}$$

$$\mathsf{sup\text{-}norm:}\ \left\|f\right\|_{\infty} = \mathsf{sup}\left\{\left|f(x)\right| : x \in [a,b]\right\}$$



## **Examples of Normed Spaces**

#### Note

Spaces like  $C^1[a,b]$  which represents the space of continuously differentiable real valued function on [a,b] can also be equipped with the supremum norm. However, it turns out that in applications, this is not a good choice (we will discuss this later on in the context of continuity). So, we'll use a different norm on  $C^1[a,b]$  given below:

$$||f||_{1,\infty} = ||f||_{\infty} + ||f'||_{\infty}, \ f \in C^1[a,b],$$
 where  $f'$  refers to the derivative of  $f$ .





## Continuity in Normed Spaces

### Definition 2 (Continuous function)

A function  $f: X \to Y$ , where X and Y are normed spaces, is said to be continuous at a point  $x_0 \in X$  if, for any  $\epsilon > 0$ , there exists a  $\delta > 0$  such that whenever  $x \in X$  satisfies  $||x - x_0|| < \delta$ , it follows that  $||f(x)-f(x_0)||<\epsilon.$ 

The map  $f: X \to Y$  is called continuous if f is continuous at  $x_0$  for all  $x_0 \in X$ 





## Continuity in Normed Spaces

#### Remark

The map  $D: (C^1[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$  by

$$(D\mathbf{x})(t) = \mathbf{x}'(t), \quad t \in [0,1], \quad \mathbf{x} \in C^1[0,1].$$

is nowhere continuous on  $C^1[0,1]$ .

But if we change the norm of  $C^1[0,1]$  to  $\|\cdot\|_{1,\infty}$  then the map  $D:(C^1[0,1],\|\cdot\|_{1,\infty})\to (C[0,1],\|\cdot\|_{\infty})$  by

$$(D\mathbf{x})(t) = \mathbf{x}'(t), \quad t \in [0,1], \quad \mathbf{x} \in C^1[0,1].$$

is continuous on  $C^1[0,1]$ .





### Continuous Linear Transformation

### Theorem 3

Let X and Y be normed spaces over  $\mathbb{R}$ , and  $T:X\to Y$  be a linear transformation. Then are equivalent:

- T is continuous.
- 2 T is continuous at 0.
- **3** There exists an M > 0 such that for all  $x \in X$ ,  $||T(x)|| \le M||x||$

### Example

Let  $S := \{ \mathbf{h} \in C^1[a, b] : \mathbf{h}(a) = \mathbf{h}(b) = 0 \}$ . Let  $\mathbf{A}, \mathbf{B} \in C[a, b]$  be two fixed functions. Consider the map  $L : S \to \mathbb{R}$  given by

$$L(\mathbf{h}) = \int_a^b \Big( \mathbf{A}(t) \mathbf{h}(t) + \mathbf{B}(t) \mathbf{h}'(t) \Big) dt, \quad \mathbf{h} \in S.$$

L is a continuous linear transformation.

### Definition 4 (Frechet derivative)

Let  $X,\ Y$  be normed spaces,  $f:X\to Y$  be a map, and  $x_0\in X$ . f is said to be differentiable at  $x_0$  if there exists a continuous linear transformation  $L:X\to Y$  such that for every  $\epsilon>0$ , there exists a  $\delta>0$  such that whenever  $x\in X$  satisfies  $0<\|x-x_0\|<\delta$ , we have

$$\frac{\|f(x) - f(x_0) - L(x - x_0)\|}{\|x - x_0\|} < \epsilon$$

In other words, f is differentiable at  $x_0$  if there exists a continuous linear transformation  $L: X \to Y$  such that

$$\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - L(x - x_0)\|}{\|x - x_0\|} = 0$$

If f is differentiable at  $x_0$ , then this continuous linear transformation L is unique and is called the Frechet derivative of f at  $x_0$ , denoted by  $Df(x_0)$ .

### Definition 5 (Gradient)

Let  $U \subset \mathbb{R}^n$  be open and  $f: U \to \mathbb{R}$  be differentiable at  $a \in U$  with Df(a) = A. As A is a linear transformation from  $\mathbb{R}^n$  to  $\mathbb{R}$ , we know that there exists a unique vector  $\alpha \in \mathbb{R}^n$  such that  $Ah = \alpha \cdot h = \sum_{i=1}^n \alpha_i h_i$  if  $h = (h_1, \ldots, h_n)$ . This unique vector  $\alpha$  is called the gradient of f at a. It is denoted by  $\operatorname{grad} f(a)$  or  $\nabla f(a)$ . So, we have

$$\operatorname{grad} f(a) = ig( \operatorname{D} f(a)(e_1), \dots, \operatorname{D} f(a)(e_n) ig) \quad \text{and} \quad \operatorname{D} f(a)(h) = \nabla f(a) \cdot h$$



### Definition 6 (Directional Derivative)

Let  $U \subset \mathbb{R}^n$  be open and  $f: U \to \mathbb{R}$  be any function. Fix a vector  $v \in \mathbb{R}^n$ . We say that f has directional derivative at a in the direction of v if the limit  $\lim_{t\to 0} \frac{f(a+tv)-f(a)}{t}$  exists. Note that since U is open, as observed earlier,  $a+tv \in U$  for all t in a sufficiently small interval around 0. The limit, if exists, is denoted by  $D_v f(a)$ .



#### Theorem 7

Let  $f: U \subset \mathbb{R}^n \to \mathbb{R}$  be differentiable at  $a \in U$ . Then  $D_v f(a)$  exists for all  $v \in U$  and we have

$$D_{v}f(a) = Df(a)(v)$$

#### Remark

There exists functions  $f: U \to \mathbb{R}$  such that  $D_v f(a)$  exists for all  $v \in U$  but f is not differentiable.

However, if  $D_{\nu}f(x)$  exists and is continuous for all  $\nu \in U$  in a neighbourhood of  $a \in U$ , then f is differentiable at a.





### Mean Value Theorem

#### Theorem 8

Let  $f: U \subset \mathbb{R}^n \to \mathbb{R}$  be differentiable on U and  $x, y \in U$ . Assume that the line segment  $[x, y] := \{(1 - t)x + ty : t \in [0, 1]\} \subset U$ . Then there exists  $t_0 \in (0, 1)$  such that if we set  $z := (1 - t_0)x + t_0y$ , then

$$f(y) - f(x) = Df(z)(y - x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(z)(y_i - x_i)$$



## Taylor's Formula

 $f: U \subset \mathbb{R}^n \to \mathbb{R}$  be a  $C^2$  function.

For, simplicity, lets assume  $0, x \in U$ , U is open and star shaped at 0, then the taylor expansion of f at 0 is given by

$$f(x) = f(0) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(0)x_{i} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\theta x)x_{j}x_{i}, \quad \text{where } \theta \in (0,1)$$

This can also be written as

$$f(x) = f(0) + \nabla f(0) \cdot x + x^{T} H_{f}(\theta x) x,$$
where  $H_{f}(x) = D^{2}f(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}}(x) & \dots & \frac{\partial^{2}f}{\partial x_{n}^{2}}(x) \end{bmatrix} \text{ and } \theta \in (0,1)$ 

 $H_f(x)$  is known as the Hessian of f at x.



### Convex Sets and Convex Functions

### Definition 9 (Convex Sets)

Let X be a normed space. A subset  $C \subset X$  is said to be convex set if for every  $x_1, x_2 \in C$ , and all  $\alpha \in (0,1), (1-\alpha) \cdot x_1 + \alpha \cdot x_2 \in C$ .

### Definition 10 (Convex Functions)

Let X be a normed space and  $C \subset X$  be convex. A map  $f: C \to \mathbb{R}$  is said to be convex function if for every  $x_1, x_2 \in C$ , and all  $\alpha \in (0,1), \ f((1-\alpha) \cdot x_1 + \alpha \cdot x_2) \leq (1-\alpha)f(x_1) + \alpha f(x_2).$ 





### Convex Sets and Convex Functions

#### Theorem 11

Let  $f : \mathbb{R} \to \mathbb{R}$  be a twice continuously differentiable function. Then f is convex if and only if  $f''(x) \ge 0$  for every  $x \in X$ .

#### Theorem 12

Let C be an open convex set,  $f: C \to \mathbb{R}$  be a  $C^2$  function such that for all  $x \in C$ ,

$$H_f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \dots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}$$

is positive semi-definite. Then f is convex.

Note: A matrix M is positive semi-definite if  $v^T M v \ge 0$  for all  $v \in \mathbb{R}^n$ 

## Role of Vanishing Derivative in Optimization

#### Theorem 13

Let X be a normed space, and let  $f: X \to \mathbb{R}$  be a function that is differentiable at  $x_* \in X$ . If f has a minimum at  $x_*$ , then  $Df(x_*) = \mathbf{0}$ 

#### Theorem 14

Let X be normed space and  $f: X \to \mathbb{R}$  be convex and differentiable. If  $x_* \in X$  is such that  $Df(x_*) = \mathbf{0}$ , then f has a minimum at  $x_*$ .





## Optimization: Euler-Lagrange Equation as a Special Case

#### Lemma 15

If  $\mathbf{k} \in C[a,b]$  such that for all  $\mathbf{h} \in C^1[a,b]$  with  $\mathbf{h}(a) = \mathbf{h}(b) = 0$ , we have

$$\int_a^b \mathbf{k}(t)\mathbf{h}'(t)dt = 0,$$

then there exists a constant  $c \in \mathbb{R}$  such that  $\mathbf{k}(t) = c, \ \forall t \in [a, b]$ .





## Optimization: Euler-Lagrange Equation as a Special Case

#### Proof.

Take 
$$c := \frac{1}{b-a} \int_a^b \mathbf{k}(t) dt$$
.

Define 
$$\mathbf{h}_0:[a,b] \to \mathbb{R}$$
 by  $\mathbf{h}_0(t) = \int_a^t (\mathbf{k}(\tau) - c) d\tau$ .

Then  $\mathbf{h}_0 \in C^1[a,b]$  and  $\mathbf{h}_0(a) = \mathbf{h}_0(b) = 0$ . Thus  $\int_a^b \mathbf{k}(t) \mathbf{h}'_0(t) dt = 0$ .

Since  $\mathbf{h}'_0(t) = \mathbf{k}(t) - c$ , we get

$$\int_{a}^{b} (\mathbf{k}(t) - c)^{2} dt = \int_{a}^{b} (\mathbf{k}(t) - c) \mathbf{h'}_{0}(t) dt$$

$$= \int_{a}^{b} \mathbf{k}(t) \mathbf{h'}_{0}(t) dt - c \int_{a}^{b} \mathbf{h'}_{0}(t) dt$$

$$= 0 - c(\mathbf{h}_{0}(b) - \mathbf{h}_{0}(a))$$

$$= 0$$

Thus  $\mathbf{k}(t) - c = 0$  for all  $t \in [a, b]$ 

#### Theorem 16

### Suppose that

- $S = \{ \mathbf{x} \in C^1[a, b] : \mathbf{x}(a) = y_a, \mathbf{x}(b) = y_b \}$
- $F: \mathbb{R}^3 \to \mathbb{R}, (\xi, \eta, \tau) \xrightarrow{F} F(\xi, \eta, \tau)$ , is a  $C^2$  function
- $f: S \to \mathbb{R}$  is given by  $f(\mathbf{x}) = \int_a^b F(\mathbf{x}(t), \mathbf{x}'(t), t) dt, \ \mathbf{x} \in S$

#### Then we have:

(i) If  $x_*$  is a minimizer of f, then it satisfies the Euler-Lagrange equation:

$$\frac{\partial F}{\partial \xi}(\mathbf{x}_*(t), \mathbf{x'}_*(t), t) - \frac{d}{dt} \left( \frac{\partial F}{\partial \eta}(\mathbf{x}_*(t), \mathbf{x'}_*(t), t) \right) = 0 \quad \text{for all } t \in [a, b]$$

(ii) If f is convex and  $\mathbf{x}_* \in S$  satisfies the Euler-Lagrange equation, then  $\mathbf{x}_*$  is a minimizer of f.

#### Proof.

(i) The proof is long, so we divide it into multiple steps.

**Step 1.** The set S is not a vector space (unless  $y_a = y_b = 0$ ). So, we introduce a new vector space  $X = \{\mathbf{h} \in C^1[a, b] : \mathbf{h}(a) = \mathbf{h}(b) = 0\}$  with norm  $\|\cdot\|_{1,\infty}$ .

Note that  $\mathbf{h} \in X \iff \mathbf{x}_* + \mathbf{h} \in S$ 

Define  $\widetilde{f}: X \to \mathbb{R}$  given by  $\widetilde{f}(\mathbf{h}) = f(\mathbf{x}_* + \mathbf{h}), \mathbf{h} \in X$ .

Now,  $\widetilde{f}(\mathbf{h}) = f(\mathbf{x}_* + \mathbf{h}) \ge f(\mathbf{x}_*) = \widetilde{f}(\mathbf{0})$ , for all  $\mathbf{h} \in X$ . So,  $\mathbf{0}$  is a minimizer of  $\widetilde{f}$ .



#### Proof.

**Step 2.** Calculating  $D\widetilde{f}(\mathbf{0})$ .

By applying Taylor's formula on F, we have

$$F(\xi_{0} + p, \eta_{0} + q, \tau_{0} + r) - F(\xi_{0}, \eta_{0}, \tau_{0})$$

$$= p \frac{\partial F}{\partial \xi}(\xi_{0}, \eta_{0}, \tau_{0}) + q \frac{\partial F}{\partial \eta}(\xi_{0}, \eta_{0}, \tau_{0}) + r \frac{\partial F}{\partial \tau}(\xi_{0}, \eta_{0}, \tau_{0})$$

$$+ \frac{1}{2} \begin{bmatrix} p & q & r \end{bmatrix} H_{F}(\xi_{0} + \theta p, \eta_{0} + \theta q, \tau_{0} + \theta r) \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

for some  $\theta \in (0,1)$ .



#### Proof.

Using this for each  $t \in [a, b]$ , we obtain

$$\widetilde{f}(\mathbf{h}) - \widetilde{f}(\mathbf{0}) = \int_{a}^{b} \left( \mathbf{A}(t)\mathbf{h}(t) + \mathbf{B}(t)\mathbf{h}'(t) \right) dt$$

$$+ \int_{a}^{b} \frac{1}{2} \begin{bmatrix} \mathbf{h}(t) & \mathbf{h}'(t) & 0 \end{bmatrix} H_{F}(\mathbf{P}(t)) \begin{bmatrix} \mathbf{h}(t) \\ \mathbf{h}'(t) \\ 0 \end{bmatrix} dt$$

where  $\Theta:[a,b] \rightarrow (0,1)$ 

$$\mathbf{A}(t) = \frac{\partial F}{\partial \xi}(\mathbf{x}_*(t), \mathbf{x'}_*(t), t)$$

$$\mathbf{B}(t) = \frac{\partial F}{\partial \eta}(\mathbf{x}_*(t), \mathbf{x'}_*(t), t)$$

$$\mathbf{P}(t) = (\mathbf{x}_*(t) + \mathbf{\Theta}(t)\mathbf{h}(t), \mathbf{x'}_*(t) + \mathbf{\Theta}(t)\mathbf{h'}(t), t)$$

#### Proof.

Define  $L: X \to \mathbb{R}$  by

$$L(\mathbf{h}) = \int_a^b \Big( \mathbf{A}(t) \mathbf{h}(t) + \mathbf{B}(t) \mathbf{h}'(t) \Big) dt, \ \mathbf{h} \in X.$$

We know that L is a continuous linear transformation. It can be shown that for  $\mathbf{h} \in X$ ,

$$|\widetilde{f}(\mathbf{h}) - \widetilde{f}(\mathbf{0} - L(\mathbf{h} - \mathbf{0}))| \le M \|\mathbf{h}\|_{1,\infty}^2$$

where

$$M = \frac{1}{2} \int_{a}^{b} \left( \left| \frac{\partial^{2} F}{\partial \xi^{2}} (\mathbf{P}(t)) \right| + 2 \left| \frac{\partial^{2} F}{\partial \xi \partial \eta} (\mathbf{P}(t)) \right| + \left| \frac{\partial^{2} F}{\partial \eta^{2}} (\mathbf{P}(t)) \right| \right) dt$$

#### Proof.

Let  $\epsilon > 0$ . Set  $\delta = \frac{\epsilon}{M}$ . Then, whenever  $\mathbf{h} \in X$  satisfies  $0 < \|\mathbf{h} - \mathbf{0}\|_{1,\infty} < \delta$ , we have

$$\frac{|\widetilde{f}(\mathbf{h}) - \widetilde{f}(\mathbf{0}) - L(\mathbf{h} - \mathbf{0})|}{\|\mathbf{h}\|_{1,\infty}} \leq \frac{M\|\mathbf{h}\|_{1,\infty}^2}{\|\mathbf{h}\|_{1,\infty}} = M\|\mathbf{h}\|_{1,\infty} < M\delta = \epsilon.$$

Thus,  $D\widetilde{f}(\mathbf{0}) = L$ , i.e.,

$$D\widetilde{f}(\mathbf{0})(\mathbf{h}) = L(\mathbf{h}) = \int_a^b \left( \mathbf{A}(t)\mathbf{h}(t) + \mathbf{B}(t)\mathbf{h}'(t) \right) dt, \ \mathbf{h} \in X$$





### Proof.

**Step 3.** Utilizing  $Df(\mathbf{0}) = \mathbf{0}$ . By using integration by parts,

$$\int_{a}^{b} \mathbf{A}(t)\mathbf{h}(t)dt = \mathbf{h}(t) \int_{a}^{t} \mathbf{A}(\tau)d\tau \Big|_{a}^{b} - \int_{a}^{b} \left(\mathbf{h}'(t) \int_{a}^{t} \mathbf{A}(\tau)d\tau\right)dt$$
$$= -\int_{a}^{b} \left(\mathbf{h}'(t) \int_{a}^{t} \mathbf{A}(\tau)d\tau\right)dt$$

because 
$$\mathbf{h}(a) = \mathbf{h}(b) = 0$$
. So, for  $\mathbf{h} \in X$ 

$$L(\mathbf{h}) = \int_{a}^{b} \left( \mathbf{A}(t)\mathbf{h}(t) + \mathbf{B}(t)\mathbf{h}'(t) \right) dt$$
$$= \int_{a}^{b} \left( -\int_{a}^{t} \mathbf{A}(\tau)d\tau + \mathbf{B}(t) \right) \mathbf{h}'(t) dt$$

#### Proof.

Now, as  $\mathbf{0}$  is a minimizer for f, by Theorem 13,  $Df(\mathbf{0}) = L = \mathbf{0}$ . This means  $L(\mathbf{h}) = 0$  for all  $\mathbf{h} \in X$ . Using Lemma 18, we obtain

$$-\int_a^t \mathbf{A}(\tau)d\tau + \mathbf{B}(t) = c, \ \forall \ t \in [a,b]$$

for some constant c. By differentiating this with respect to t, we obtain

 $\mathbf{A}(t) - \frac{d}{dt}(\mathbf{B}(t)) = 0, \ \forall \ t \in [a, b]$ 

which is same as

$$\frac{\partial F}{\partial \xi}(\mathbf{x}_*(t), \mathbf{x'}_*(t), t) - \frac{d}{dt} \left( \frac{\partial F}{\partial \eta}(\mathbf{x}_*(t), \mathbf{x'}_*(t), t) \right) = 0, \ \forall \ t \in [a, b]$$

This completes the proof of (i).

#### Proof.

Now, let f is convex and  $\mathbf{x}_* \in S$  satisfies the Euler-Lagrange equation. Define X and f in the same manner as **Step 1**. By retracing the steps of **Step 3** above, we see that  $D\widetilde{f}(\mathbf{0}) = \mathbf{0}$ . Also, f is convex implies  $\tilde{f}$  is convex. So, by Theorem 14,  $\tilde{f}$  has a minimum at  $\boldsymbol{0}$ . For any  $\mathbf{x} \in S$ , we have

$$f(\mathbf{x}) = f(\mathbf{x}_* + (\mathbf{x} - \mathbf{x}_*)) = \widetilde{f}(\mathbf{x} - \mathbf{x}_*) \ge \widetilde{f}(\mathbf{0}) = f(\mathbf{x}_*).$$

Hence,  $\mathbf{x}_*$  is a minimizer of f. This completes the proof.





#### The Problem Statement

Johann Bernoulli posed the problem of the brachistochrone to the readers of Acta Eruditorum in June, 1696. Bernoulli wrote the problem statement as:

Given two points A and B in a vertical plane, what is the curve traced out by a point acted on only by gravity, which starts at A and reaches B in the shortest time.





▶ Open in Desmos



#### Solution



We will here use the illustrated coordinate system.

Let the particle starts from A(0,0) and reaches B(h,a), h,a>0 and moves along the curve y=y(x) such that y(0)=0 and y(h)=a. Using the conservation of energy, we have

$$\frac{1}{2}mv^2 = mgx \implies v = \sqrt{2gx}$$



#### Solution

Also, the arc length or distance along the curve s satisfies

$$\frac{ds}{dx} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

and

$$v = \frac{ds}{dt}$$

. So the total time required by the particle to descend along the curve y=y(x) is given by

$$T(y) = \int_{A}^{B} dt = \int_{A}^{B} \frac{ds}{v} = \int_{0}^{h} \frac{\sqrt{1 + (y'(x))^{2}}}{\sqrt{2gx}} dx$$

#### Solution

Now, to find the minimizer of T we will apply Theorem 16 i.e.,  $F(y(x), y'(x), x) = \frac{\sqrt{1+(y'(x))^2}}{\sqrt{2gx}}$  need to satisfy the Euler-Lagrange

$$0 - \frac{d}{dx} \left( \frac{y'(x)}{\sqrt{2gx(1 + (y'(x))^2}} \right) = 0$$

Integrating this, we get

equation. We get

$$\frac{y'(x)}{\sqrt{2gx(1+(y'(x))^2}} = c$$

where c is a constant. Rearranging this, we get

$$y'(x) = \sqrt{\frac{x}{\alpha - x}}$$
, where  $\alpha = \frac{1}{2gc^2}$ 



### Solution

It turns out the solution to this (in parametric form) is given by

$$x(\theta) = \frac{\alpha}{2} \left( 1 - \cos \theta \right)$$

,

$$y(\theta) = \frac{\alpha}{2} \left( \theta - \sin \theta \right)$$

This is exactly the cycloid passing though (0,0) and (h,a)!





# Thank You!



