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Introduction

This report is all about understanding how to make things work best using a kind of math
called ”optimization.” We’re going to explore a special kind of math space where these
ideas work, and it’s called ”normed spaces.”

Step by step, we’re going to learn the main ideas of how this optimization stuff works.
We’ll start by understanding how things change and behave smoothly in these special
math spaces. Then, we’ll dive into the rules that help us find the best answers for certain
math problems.

A big focus of this report is something called the ”Euler-Lagrange equation.” It’s like a
super tool that helps us find the very best solutions to problems. We’ll break down how
this equation works when things are described in these normed spaces.

It’s worth noting that this report is more about the ideas and theories behind how
things can be made better. But these ideas are like the building blocks that can help
solve problems in the real world. By diving into this report, you’ll be getting a solid
understanding of how to tackle tough math challenges.
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1 Continuity and Differentiability in Normed Spaces

In the realm of optimization, the study of functions defined on normed spaces provides a
rich framework for understanding and solving complex problems. The concept of
continuity and differentiability is well-established for functions from R to R, so the
primary objective of this section is to extend the fundamental concepts of continuity
and differentiability in normed spaces. We begin by visiting the notion of normed
spaces, which encompass a wide range of function spaces and provide a metric structure
for measuring distances and defining convergence.

1.1 Introduction to Normed Spaces

Definition 1. A normed space is a vector space equipped with a norm, which is a
function that assigns a non-negative real number to each vector in the space. Formally, a
norm on a vector space X is a function ∥·∥ : X → R that satisfies the following properties
for all vectors x, y ∈ X and scalar α ∈ R :

• Non-negativity: ∥x∥ ≥ 0, and ∥x∥ = 0 if and only if x = 0
• Homogeneity: ∥αx∥ = |α|∥x∥
• Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Metric structure of normed spaces: The norm induces a metric, or a distance
function, on the normed space. This metric enables the measurement of distances
between vectors and provides a notion of convergence and continuity. In normed space
(X, ∥·∥), if we define d : X ×X → R by d(x, y) = ∥x− y∥ for x, y ∈ X, then (X, d) is a
metric space with the metric/distance function d.

Examples of normed spaces:

• Euclidean Spaces: In familiar spaces Rn, if we define ∥x∥p =
( n∑

i=1

|xi|p
) 1

p
for p ∈ N

and ∥x∥∞ = sup{|xi| : i = 1, 2, . . . , n} where x = (x1, x2, . . . , xn) ∈ Rn, then
(Rn, ∥·∥∞) and (Rn, ∥·∥p) for p ∈ N are different normed spaces, though most
common being the ∥·∥2 on Rn

• Sequence spaces: Sequence spaces, denoted as ℓp, consist of sequences of real or
complex numbers that possess certain convergence properties. The p-norm, or ℓp

norm, is commonly associated with sequence spaces and provides a measure of the
”size” of a sequence. The p-norm is defined as:

∥x∥p =
( ∞∑

i=1

|xi|p
) 1

p
where x = (xn) represents a sequence.

Depending on the value of p, different sequence spaces are obtained. Here are a few
examples:

(i) ℓ1 space (Manhattan norm): ∥x∥1 = |x1|+ |x2|+ · · ·
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(ii) ℓ2 space (Euclidean norm): ∥x∥2 =
√

|x1|2 + |x2|2 + · · ·

(iii) ℓ∞ space (Supremum norm): ∥x∥∞ = sup{|xi| : i ∈ N}

• Function Spaces (Lp): Function spaces encompass a broad class of spaces consisting
of functions with specific properties. Different function spaces are associated with
different norms, reflecting characteristics such as integrability or smoothness. These
spaces can be thought of continuous analogue of the sequence spaces. Here are a
few examples:

(i) Lp space: For a real valued function f defined on a measurable, the Lp norm is
defined as:

∥f∥p =
(∫

|f(x)|pdx
) 1

p

(ii) C[a, b] space: It is defined as the space of continuous functions from [a, b] to

R. The Lp norms can be defined here as well, ∥f∥p =
(∫ b

a

|f(x)|pdx
) 1

p
, but

the most common is the supremum or uniform norm, defined as:

∥f∥∞ = sup{|f(x)| : x ∈ [a, b]}

Spaces like C1[a, b] which represents the space of continuously differentiable
real valued function on [a, b] can also be equipped with the supremum norm.
However, it turns out that in applications, this is not a good choice (we will
discuss this later on in the context of continuity). So, we’ll use a different norm
on C1[a, b] given below:

∥f∥1,∞ = ∥f∥∞ + ∥f ′∥∞, f ∈ C1[a, b], where f ′ refers to the derivative of f .

1.2 Continuity in Normed Spaces

Definition 2. A function f : X → Y , where X and Y are normed spaces, is said to be
continuous at a point x0 ∈ X if, for any ϵ > 0, there exists a δ > 0 such that whenever
x ∈ X satisfies ∥x− x0∥ < δ, it follows that ∥f(x)− f(x0)∥ < ϵ.

The map f : X → Y is called continuous if f is continuous at x0 for all x0 ∈ X

Example 3. Define D : C1[0, 1] → C[0, 1] by

(Dx)(t) = x′(t), t ∈ [0, 1], x ∈ C1[0, 1].

Examine the continuity of f when:

(i) both C1[0, 1] and C[0, 1] are equipped with ∥·∥∞
(ii) C1[0, 1] is equipped with ∥·∥1,∞ and C[0, 1] with ∥·∥∞

Note. Here, the D is “differentiation pointwise”
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Solution.

(i) Let x0 ∈ C1[0, 1] and ϵ > 0.

For any δ > 0, by Archimedian property, there exists n ∈ N such that n >
2ϵ

δ

Consider x ∈ C1[0, 1] given by x(t) = x0(t) +
δ

2
tn.Then,

∥x− x0∥∞ =

∥∥∥∥δ2tn
∥∥∥∥
∞

=

∣∣∣∣δ2
∣∣∣∣ ∥tn∥∞ =

δ

2
< δ

But,

∥Dx−Dx0∥∞ = ∥x′ − x′
0∥∞ =

∥∥∥∥nδ2 tn−1

∥∥∥∥
∞

=

∣∣∣∣nδ2
∣∣∣∣ ∥∥tn−1

∥∥
∞ =

nδ

2
> ϵ

As x0 and δ are arbitrary, so D is nowhere conitnuous on C1[0, 1] equipped with
the norm ∥·∥∞

(ii) Let x0 ∈ C1[0, 1] and ϵ > 0. Set δ = ϵ. Then δ > 0 and whenever x ∈ C1[0, 1]
satisfies ∥x− x0∥1,∞ < δ, we have

∥Dx−Dx0∥∞ = ∥x′ − x′
0∥∞ ≤ ∥x− x0∥1,∞ < δ = ϵ

As x0 ∈ C1[0, 1] is arbitrary, it follows that D is continuous on C1[0, 1] equipped
with ∥·∥1,∞

Definition 4 (Linear Transformation). Let X and Y be vector spaces over R. A map
T : X → Y is said to be a linear transormation if it satisfies the following:

• For all x1, x2 ∈ X, T (x1 + x2) = T (x1) + T (x2).

• For all x ∈ X and all α ∈ R, T (α · x) = α · T (x)

Theorem 5 (Continuous Linear transformation). Let x and Y be normed spaces over R,
and T : X → Y be a linear transformation. Then are equivalent:

(i) T is continuous.

(ii) T is continuous at 0.

(iii) There exists an M > 0 such that for all x ∈ X, ∥T (x)∥ ≤ M∥x∥

Proof. We will show the three implications (i) =⇒ (ii), (ii) =⇒ (iii) and (iii) =⇒ (i)
for proving all the three equivalences.

(i) =⇒ (ii). This holds by the definition of continuity on X, i.e., if T is continuous on
X, then T is continuous on x0 for all x0 ∈ X, so T is continuous at 0.

(ii) =⇒ (iii). Take ϵ = 1 > 0. Then there exists a δ > 0 such that ∥x− 0∥ = ∥x∥ <
δ =⇒ ∥T (x)− T (0)∥ = ∥T (x)∥ < 1

Claim: ∥T (x)∥ ≤ 2

δ
∥x∥ for all x ∈ X.
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Clearly, when x = 0, LHS = RHS.

Now, if x ∈ X, x ̸= 0. Set y =
δ

2∥x∥
· x.Then

∥y∥ =

∥∥∥∥ δ

2∥x∥
· x
∥∥∥∥ =

δ

2∥x∥
∥x∥ =

δ

2
< δ

, so ∥T (y)∥ < 1, i.e.,∥∥∥∥T ( δ

2∥x∥
· x
)∥∥∥∥ =

∥∥∥∥ δ

2∥x∥
· T (x)

∥∥∥∥ =
δ

2∥x∥
∥T (x)∥ < 1 =⇒ ∥T (x)∥ ≤ 2

δ
∥x∥

So (iii) holds with M =
2

δ
.

(iii) =⇒ (i). Let M > 0 be such that for all x ∈ X, ∥T (x)∥ ≤ M∥x∥. Let x0 ∈ X and

ϵ > 0 be arbitrary. Take δ =
ϵ

M
> 0. Then whenever ∥x− x0∥ < δ, we have

∥T (x)− T (x0)∥ = ∥T (x− x0)∥ ≤ M∥x− x0∥ < Mδ = ϵ

So T is continuous on X

Example 6. Let S := {h ∈ C1[a, b] : h(a) = h(b) = 0}. Let A,B ∈ C[a, b] be two fixed
functions. Consider the map L : S → R given by

L(h) =

∫ b

a

(
A(t)h(t) +B(t)h′(t)

)
dt, h ∈ S.

Show that L is a continuous linear transformation.

Solution. Let us first check that L is a linear transformation. We have:

(i) For all h1,h2 ∈ S,

L(h1 + h2)

=

∫ b

a

(
A(t)(h1 + h2)(t) +B(t)(h′

1 + h′
2)(t)

)
dt

=

∫ b

a

(
A(t)(h1(t) + h2(t)) +B(t)(h′

1(t) + h′
2(t))

)
dt

=

∫ b

a

(
A(t)h1(t) +B(t)h′

1(t) +A(t)h2(t) +B(t)h′
2(t)
)
dt

=

∫ b

a

(
A(t)h1(t) +B(t)h′

1(t)
)
dt+

∫ b

a

(
A(t)h2(t) +B(t)h′

2(t)
)
dt

= L(h1) + L(h2)
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(ii) For all h ∈ S and α ∈ R,

L(α · h) =
∫ b

a

(
A(t)(α · h()t) +B(t)(α · h′)(t)

)
dt

=

∫ b

a

(
A(t)αh(t) +B(t)αh′(t)

)
dt

=α

∫ b

a

(
A(t)h(t) +B(t)h′(t)

)
dt

=αL(h)

So, L is a linear transformation. Next, we will show L is continuous using Theorem
5. We have for h ∈ S that

|L(h)| =

∣∣∣∣∣
∫ b

a

(
A(t)h(t) +B(t)h′(t)

)
dt

∣∣∣∣∣
≤
∫ b

a

∣∣∣A(t)h(t) +B(t)h′(t)
∣∣∣dt

≤
∫ b

a

(∣∣A(t)
∣∣∣∣h(t)∣∣+ ∣∣B(t)

∣∣∣∣h′(t)
∣∣)dt

≤
∫ b

a

(∣∣A(t)
∣∣∥h∥∞ +

∣∣B(t)
∣∣∥h′∥∞

)
dt

≤
∫ b

a

(∣∣A(t)
∣∣∥h∥1,∞ +

∣∣B(t)
∣∣∥h∥1,∞)dt

≤

(∫ b

a

(∣∣A(t)
∣∣+ ∣∣B(t)

∣∣)dt)∥h∥1,∞ = M∥h∥1,∞,

where M =

∫ b

a

(∣∣A(t)
∣∣+ ∣∣B(t)

∣∣)dt. Thus L is continuous using Theorem 5.

1.3 Differentiation in Normed Spaces

Definition 7 (Frechet derivative). Let X, Y be normed spaces, f : X → Y be a map,
and x0 ∈ X. f is said to be differentiable at x0 if there exists a continuous linear
transformation L : X → Y such that for every ϵ > 0, there exists a δ > 0 such that
whenever x ∈ X satisfies 0 < ∥x− x0∥ < δ, we have

∥f(x)− f(x0)− L(x− x0)∥
∥x− x0∥

< ϵ

In other words, f is differentiable at x0 if there exists a continuous linear transformation
L : X → Y such that

lim
x→x0

∥f(x)− f(x0)− L(x− x0)∥
∥x− x0∥

= 0
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It can be shown that if f is differentiable at x0, then this continuous linear transformation
L is unique and is called the Frechet derivative (or simply derivative) of f at x0.

Here, we will denote the derivative of f at x0 as Df(x0). If f is differentiable at every
point x ∈ X, then f is said to be differentiable.

Definition 8 (Gradient). Let U ⊂ Rn be open and f : U → R be differentiable at a ∈ U
with Df(a) = A. As A is a linear transformation from Rn to R, we know that there exists
a unique vector α ∈ Rn such that Ah = α ·h =

∑n
i=1 αihi if h = (h1, . . . , hn). This unique

vector α is called the gradient of f at a. It is denoted by gradf(a) or ∇f(a). So, we have

gradf(a) =
(
Df(a)(e1), . . . , Df(a)(en)

)
and Df(a)(h) = ∇f(a) · h

.

Definition 9 (Directional Derivative). Let U ⊂ Rn be open and f : U → R be any
function. Fix a vector v ∈ Rn. We say that f has directional derivative at a in the
direction of v if the limit limt→0

f(a+tv)−f(a)
t

exists. Note that since U is open, as observed
earlier, a+ tv ∈ U for all t in a sufficiently small interval around 0. The limit, if exists,
is denoted by Dvf(a).

Theorem 10. Let f : U ⊂ Rn → R be differentiable at a ∈ U . Then Dvf(a) exists for
all v ∈ U and we have

Dvf(a) = Df(a)(v)

Remark. There exists functions f : U → R such that Dvf(a) exists for all v ∈ U but f is
not differentiable.

Considering {ei : i = 1, 2, . . . , n} to be the standard basis of Rn, the direction derivative
Deif(a), if exists, is called the i-th partial derivative of f at a and is usually denoted
∂f
∂xi

(a) or at times by Dif(a).

Also, if T : Rn → R is a linear transformation, then T (v) = (Tei, . . . , T en) · (v1, . . . , vn).
Hence, we have

Df(a)(h) =
(
Df(a)(e1), . . . , Df(a)(en)

)
· (h1, . . . , hn)

=
(
De1f(a), . . . , De1f(a)

)
· (h1, . . . , hn)

=

(
∂f

∂x1

(a), . . . ,
∂f

∂xn

(a)

)
· (h1, . . . , hn)

Thus,

∇f(a) =

(
∂f

∂x1

(a), . . . ,
∂f

∂xn

(a)

)
Theorem 11 (Mean Value Theorem). Let f : U ⊂ Rn → R be differentiable on U and
x, y ∈ U . Assume that the line segment [x, y] := {(1 − t)x + ty : t ∈ [0, 1]} ⊂ U . Then
there exists t0 ∈ (0, 1) such that if we set z := (1− t0)x+ t0y, then

f(y)− f(x) = Df(z)(y − x) =
n∑

i=1

∂f

∂xi

(z)(yi − xi)
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Taylor’s formula for functions f : U ⊂ Rn → R.

We shall here restrict ourselves to C2 functions. A function f is said to be C2 if all partial
derivatives of the form

∂α1+···+αnf

∂xα1
1 · · · ∂xαn

1

, where αj ∈ Z and α1 + · · ·+ αn ≤ 2

exist and are continuous. For, simplicity, lets assume 0, x ∈ U, U is open and star shaped
at 0 and we wish to find a taylor expansion of f at 0.

Now, consider the function g : R → R defined by g(t) = f(tx). We will try to differentiate
g in the usual calculus sense and compute its derivative.

g′(t) = lim
h→0

g(t+ h)− g(t)

h

= lim
h→0

f(tx+ hx)− f(tx)

h
=Dxf(tx)

=
n∑

i=1

∂f

∂xi

(tx)xi

In particular,

g′(0) =
n∑

i=1

∂f

∂xi

(0)xi

Let gi(t) =
∂f

∂xi

(tx). Then, proceeding as above, we have

g′i(t) =
n∑

j=1

∂gi
∂xj

(tx)xj =
n∑

j=1

∂2f

∂xj∂xi

(tx)xj

So,

g”(t) =
n∑

i=1

g′i(t) =
n∑

i=1

n∑
j=1

∂2f

∂xj∂xi

(tx)xjxi

Note that the above calculation shows that g is twice continuously differentiable and so
we can apply Taylor’s theorem for one-variable calculus to g. We get

g(t) = g(0) + g′(0)t+
g′′(θ)

2
t2, where θ ∈ (0, t)

Taking t = 1 and writing g in terms of f , we get

f(x) = f(0) +
n∑

i=1

∂f

∂xi

(0)xi +
1

2

n∑
i=1

n∑
j=1

∂2f

∂xj∂xi

(θx)xjxi, where θ ∈ (0, 1)
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This can also be written as

f(x) = f(0) +∇f(0) · x+ xTHf (θx)x,

where Hf (x) = D2f(x) =


∂2f

∂x2
1

(x) . . .
∂2f

∂x1∂xn

(x)

...
. . .

...
∂2f

∂xn∂x1

(x) . . .
∂2f

∂x2
n

(x)

 and θ ∈ (0, 1)

Hf (x) is known as the Hessian of f at x.
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2 Condition for Optimization of Functions

Optimization is the process of finding the maximum or minimum value of a function
subject to certain constraints. In the context of functions defined on normed spaces, the
study of optimization involves identifying critical points and understanding the behavior
of functions near these points. This subsection explores the conditions required for
optimizing functions in normed spaces, focusing on convex sets, convex functions, and
the use of the Hessian matrix to classify critical points.

2.1 Convex Sets and Convex Functions

Definition 12 (Convex Sets). Let X be a normed space. A subset C ⊂ X is said to be
convex set if for every x1, x2 ∈ C, and all α ∈ (0, 1), (1− α) · x1 + α · x2 ∈ C.

Definition 13 (Convex Functions). Let X be a normed space and C ⊂ X be convex.
A map f : C → R is said to be convex function if for every x1, x2 ∈ C, and all α ∈
(0, 1), f((1− α) · x1 + α · x2) ≤ (1− α)f(x1) + αf(x2).

When the inequality in the definition of convex functions is reversed, it is known as
concave functions.

Theorem 14. Let f : R → R be a twice continuously differentiable function. Then f is
convex if and only if f ′′(x) ≥ 0 for every x ∈ X.

For the sake of generality, we will focus on the study of minimization problems here. The
principles applicable to minimization extend to maximization, with the distinction that
convexity for minimization corresponds to concavity for maximization.

2.2 Role of Vanishing Derivative in Optimization

Theorem 15. Let X be a normed space, and let f : X → R be a function that is
differentiable at x∗ ∈ X. If f has a minimum at x∗, then Df(x∗) = 0

Proof. On the contrary, let us assume Df(x∗) ̸= 0. Then there exists h0 ∈ X such that
df(x∗)(h0) ̸= 0. Clearly h0 ̸= 0.

Now, Df(x∗) is continuous, let ϵ > 0, then there exists δ > 0 such that whenever x ∈ X
satisfies 0 < ∥x− x∗∥ < δ, we have

|f(x)− f(x∗)−Df(x∗)(x− x∗)|
∥x− x∗∥

< ϵ

12



.

Thus whenever 0 < ∥x− x∗∥ < δ, we have

−Df(x∗)(x− x∗)

∥x− x∗∥
≤ f(x)− f(x∗)−Df(x∗)(x− x∗)

∥x− x∗∥

≤ |f(x)− f(x∗)−Df(x∗)(x− x∗)|
∥x− x∗∥

< ϵ

Consider x := x∗ −
(
δ

2
· Df(x∗)(h0)

|Df(x∗)(h0)|
· 1

∥h0∥

)
· h0.

Then x ̸= x∗ and ∥x− x∗∥ =
δ

2
< δ.

So, we get

−Df(x∗)(x− x∗)

∥x− x∗∥
=

δ

2
· (Df(x∗)(h0))

2

|Df(x∗)(h0)|
· 1

∥h0∥
δ

2

< ϵ

. Thus, |Df(x∗)(h0)| < ϵ∥h0∥. As ϵ > 0 is arbitrary, hence |Df(x∗)(h0)| = 0. So we
obtain a contradiction.

2.3 Sufficiency of Vanishing Derivative in Optimizing

Convex Functions

Theorem 16. Let C be an open convex set, f : C → R be a C2 function such that for all
x ∈ C,

Hf (x) =


∂2f

∂x2
1

(x) . . .
∂2f

∂x1∂xn

(x)

...
. . .

...
∂2f

∂xn∂x1

(x) . . .
∂2f

∂x2
n

(x)


is positive semi-definite. Then f is convex.

Note. A matrix M is positive semi-definite if vTMv ≥ 0 for all v ∈ Rn

Proof. Let x, y ∈ C and d = y − x. Then by Taylor’s formula, we have

f(y) = f(x) +∇f(x) · d+ 1

2
dTHf (x+ θd)d, for some θ ∈ (0, 1).

As Hf (x) is positive semi-definite for all x ∈ C, so f(y) ≥ f(x) +∇f(x) · d

13



Now, let u, v ∈ C and α ∈ (0, 1). Fix x = (1− α)u+ αv.

If we take y = u, we get f(u) ≥ f(x) + α∇f(x) · (u− v).

And if y = v, we get f(v) ≥ f(x) + (1− α)∇f(x) · (u− v).

Using the above two inequalities, we get

(1− α)f(u) + αf(v) ≥ (1− α)f(x) + αf(x) = f(x) = f((1− α)u+ αv)

So, f is convex.

Theorem 17. Let X be normed space and f : X → R be convex and differentiable. If
x∗ ∈ X is such that Df(x∗) = 0, then f has a minimum at x∗.

Proof. Let us assume that x∗ is not a minimizer of f , then there exists x0 ∈ X such that
f(x0) < f(x∗). Define φ : R → R by φ(t) = f(tx0 + (1− t)x∗), t ∈ R.

Now, for α ∈ (0, 1) and t1, t2 ∈ R,

φ((1− α)t1 + αt2) = f
((

(1− α)t1 + αt2
)
x0 +

(
1− (1− α)t1 − αt2

)
x∗

)
= f

(
(1− α)(t1x0 + (1− t1)x∗) + α(t2x0 + (1− t2)x∗)

)
≤ (1− α)f

(
t1x0 + (1− t1)x∗

)
+ αf

(
t2x0 + (1− t2)x∗

)
= (1− α)φ(t1) + αφ(t2)

So, φ is convex. Using the concept of directional derivative, we have

φ′(0) = Dx0−x∗f(x∗) = Df(x∗)(x0 − x∗) = 0(x0 − x∗) = 0

Since φ(1) = f(x0) < f(x∗) = φ(0), it follows from the mean value theorem that there

exists a θ ∈ (0, 1) such that φ′(θ) =
φ(1)− φ(0)

1− 0
< 0 = φ′(0).

But, φ is convex, by theorem 14, φ′′(t) ≥ 0, so φ′ is increasing. So, this is a contradiction.
Thus f has a minimum at x∗

14



3 Optimization: Euler-Lagrange Equation as a

Special Case

In this section, we will outline a crucial requisite for the minimization of a constrained
function of the form

f(x) =

∫ b

a

F (x(t),x′(t), t)dt.

The necessary condition takes the shape of a differential equation, which the minimizer
must adhere to. This equation is commonly referred to as the Euler-Lagrange equation.

First we will start with a lemma which we will use to prove the next theorem.

Lemma 18. If k ∈ C[a, b] such that for all h ∈ C1[a, b] with h(a) = h(b) = 0, we have∫ b

a

k(t)h′(t)dt = 0,

then there exists a constant c ∈ R such that k(t) = c, ∀t ∈ [a, b].

Proof. Take c :=
1

b− a

∫ b

a

k(t)dt.

Define h0 : [a, b] → R by h0(t) =

∫ t

a

(k(τ)− c)dτ .

Then h0 ∈ C1[a, b] and h0(a) = h0(b) = 0. Thus

∫ b

a

k(t)h′
0(t)dt = 0. Since h′

0(t) =

k(t)− c, we get∫ b

a

(k(t)− c)2dt =

∫ b

a

(k(t)− c)h′
0(t)dt =

∫ b

a

k(t)h′
0(t)dt− c

∫ b

a

h′
0(t)dt

= 0− c(h0(b)− h0(a)) = 0

Thus k(t)− c = 0 for all t ∈ [a, b]

3.1 Euler-Lagrange Equation: Fixed End Points

Theorem 19. Suppose that

• S = {x ∈ C1[a, b] : x(a) = ya,x(b) = yb}
• F : R3 → R, (ξ, η, τ) F7−→ F (ξ, η, τ), has continuous partial derivatives of order 2

• f : S → R is given by f(x) =

∫ b

a

F (x(t),x′(t), t)dt, x ∈ S

Then we have:

15



(i) If x∗ is a minimizer of f , then it satisfies the Euler-Lagrange equation:

∂F

∂ξ
(x∗(t),x

′
∗(t), t)−

d

dt

(
∂F

∂η
(x∗(t),x

′
∗(t), t)

)
= 0 for all t ∈ [a, b]

(ii) If f is convex and x∗ ∈ S satisfies the Euler-Lagrange equation, then x∗ is a
minimizer of f .

Proof.

(i) The proof is long, so we divide it into multiple steps.

Step 1. The set S is not a vector space (unless ya = yb = 0). So, we introduce a
new vector space X = {h ∈ C1[a, b] : h(a) = h(b) = 0} with norm ∥·∥1,∞.

Note that h ∈ X ⇐⇒ x∗ + h ∈ S

Define f̃ : X → R given by f̃(h) = f(x∗ + h), h ∈ X.

Now, f̃(h) = f(x∗ + h) ≥ f(x∗) = f̃(0), for all h ∈ X. So, 0 is a minimizer of f̃ .

Step 2. Calculating Df̃(0).

By applying Taylor’s formula on F , we have

F (ξ0 + p, η0 + q, τ0 + r)−F (ξ0, η0, τ0)

=p
∂F

∂ξ
(ξ0, η0, τ0) + q

∂F

∂η
(ξ0, η0, τ0) + r

∂F

∂τ
(ξ0, η0, τ0)

+
1

2

[
p q r

]
HF (ξ0 + θp, η0 + θq, τ0 + θr)

pq
r


for some θ ∈ (0, 1). Using this for each t ∈ [a, b], we obtain

f̃(h)−f̃(0)

=

∫ b

a

(
F (x∗(t) + h(t),x′

∗(t) + h′(t), t)− F (x∗(t),x
′
∗(t), t)

)
dt

=

∫ b

a

(
h(t)

∂F

∂ξ
(x∗(t),x

′
∗(t), t) + h′(t)

∂F

∂η
(x∗(t),x

′
∗(t), t)

+
1

2

[
h(t) h′(t) 0

]
HF

(
x∗(t) +Θ(t)h(t),x′

∗(t) +Θ(t)h′(t), t
)h(t)h′(t)

0

)dt
=

∫ b

a

(
A(t)h(t) +B(t)h′(t)

)
dt+

∫ b

a

1

2

[
h(t) h′(t) 0

]
HF

(
P(t)

)h(t)h′(t)
0

 dt
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where

Θ :[a, b] → (0, 1)

A(t) =
∂F

∂ξ
(x∗(t),x

′
∗(t), t)

B(t) =
∂F

∂η
(x∗(t),x

′
∗(t), t)

P(t) =
(
x∗(t) +Θ(t)h(t),x′

∗(t) +Θ(t)h′(t), t
)

and HF (·) denotes the Hessian of F .

Define L : X → R by

L(h) =

∫ b

a

(
A(t)h(t) +B(t)h′(t)

)
dt, h ∈ X.

From Example 6, we know that L is a continuous linear transformation. We will
now show that L is the derivative of f̃ at 0. For h ∈ X,

|f̃(h)− f̃(0− L(h− 0)|

=

∣∣∣∣12
∫ b

a

(
(h(t))2

∂2F

∂ξ2
(P(t)) + 2h(t)h′(t)

∂2F

∂ξ∂η
(P(t)) + (h′(t))2

∂2F

∂η2
(P(t))

)
dt

∣∣∣∣
≤ 1

2

∫ b

a

(
|h(t)|2

∣∣∣∣∂2F

∂ξ2
(P(t))

∣∣∣∣+ 2|h(t)||h′(t)|
∣∣∣∣ ∂2F

∂ξ∂η
(P(t))

∣∣∣∣+ |h′(t)|2
∣∣∣∣∂2F

∂η2
(P(t))

∣∣∣∣)dt
≤ 1

2

∫ b

a

(
∥h∥2∞

∣∣∣∣∂2F

∂ξ2
(P(t))

∣∣∣∣+ 2∥h∥∞∥h′∥∞

∣∣∣∣ ∂2F

∂ξ∂η
(P(t))

∣∣∣∣+ ∥h′∥2∞

∣∣∣∣∂2F

∂η2
(P(t))

∣∣∣∣)dt
≤ 1

2

∫ b

a

∥h∥21,∞
(∣∣∣∣∂2F

∂ξ2
(P(t))

∣∣∣∣+ 2

∣∣∣∣ ∂2F

∂ξ∂η
(P(t))

∣∣∣∣+ ∣∣∣∣∂2F

∂η2
(P(t))

∣∣∣∣)dt
= M∥h∥21,∞
where

M =
1

2

∫ b

a

(∣∣∣∣∂2F

∂ξ2
(P(t))

∣∣∣∣+ 2

∣∣∣∣ ∂2F

∂ξ∂η
(P(t))

∣∣∣∣+ ∣∣∣∣∂2F

∂η2
(P(t))

∣∣∣∣)dt
Note that for each t ∈ [a, b], P(t) ∈ R3 lies inside a ball with center (x∗(t),x

′
∗(t), t)

and radius ∥h∥1,∞. Also, x∗,x
′
∗ are continuous, so (x∗(t),x

′
∗(t), t), for all t ∈ [a, b],

lies inside a compact set in R3. Thus, there exists a compact set K ∈ R3 such
that P(t) ∈ K for all t ∈ [a, b]. Since the second order partial derivatives of F are
continuous, it follows that their absolute values are bounded on K. Hence, M is
finite.

Let ϵ > 0. Set δ =
ϵ

M
. Then, whenever h ∈ X satisfies 0 < ∥h− 0∥1,∞ < δ, we

have
|f̃(h)− f̃(0)− L(h− 0)|

∥h∥1,∞
≤

M∥h∥21,∞
∥h∥1,∞

= M∥h∥1,∞ < Mδ = ϵ.

Thus, Df̃(0) = L, i.e.,

Df̃(0)(h) = L(h) =

∫ b

a

(
A(t)h(t) +B(t)h′(t)

)
dt, h ∈ X
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Step 3. Utilizing Df̃(0) = 0.

By using integration by parts,∫ b

a

A(t)h(t)dt =h(t)

∫ t

a

A(τ)dτ

∣∣∣∣b
a

−
∫ b

a

(
h′(t)

∫ t

a

A(τ)dτ

)
dt

=−
∫ b

a

(
h′(t)

∫ t

a

A(τ)dτ

)
dt

because h(a) = h(b) = 0. So,

L(h) =

∫ b

a

(
A(t)h(t) +B(t)h′(t)

)
dt =

∫ b

a

(
−
∫ t

a

A(τ)dτ +B(t)

)
h′(t)dt, h ∈ X

Now, as 0 is a minimizer for f̃ , by Theorem 15, Df̃(0) = L = 0. This means
L(h) = 0 for all h ∈ X. Using Lemma 18, we obtain

−
∫ t

a

A(τ)dτ +B(t) = c, ∀ t ∈ [a, b]

for some constant c. By differentiating this with respect to t, we obtain

A(t)− d

dt

(
B(t)

)
= 0, ∀ t ∈ [a, b]

which is same as

∂F

∂ξ
(x∗(t),x

′
∗(t), t)−

d

dt

(
∂F

∂η
(x∗(t),x

′
∗(t), t)

)
= 0, ∀ t ∈ [a, b]

This completes the proof of (i).

(ii) Now, let f is convex and x∗ ∈ S satisfies the Euler-Lagrange equation. Define X
and f in the same manner as Step 1. By retracing the steps of Step 3 above, we
see that Df̃(0) = 0. Also, f is convex. So, if h1,h2 ∈ X and α ∈ (0, 1), then

f̃((1− α)h1 + αh2) =f(x∗ + (1− α)h1 + αh2)

=f((1− α)(x∗ + h1) + α(x∗ + h2))

≤(1− α)f(x∗ + h1) + αf(x∗ + h2)

=(1− α)f̃(h1) + αf̃(h2)

Thus, f̃ is convex and Df̃(0) = 0. So, by Theorem 17, f̃ has a minimum at 0.

For any x ∈ S, we have

f(x) = f(x∗ + (x− x∗)) = f̃(x− x∗) ≥ f̃(0) = f(x∗).

Hence, x∗ is a minimizer of f .

This completes the proof.
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